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Abstract
The effect of oleic acid-capped CdSe nanoparticles incorporation into poly(8-octylthiophene) (P3OT) 
colloidal solutions on optical properties was investigated. The photoluminescence study was carried 
out on both P3OT and P3OT:wt%CdSe solutions. The results showed that the inclusion of oleic acid-
capped CdSe strongly influenced the fluorescence spectra. This trend was described within the Förster 
formalism, which involves a non-radiative energy transfer from the donor P3OT to the acceptor CdSe 
NPs. Furthermore, the P3OT solution with a high oleic acid-capped CdSe concentration level was found to 
exhibit a clear splitting, assigned to the existence of different emitting chromophore species. A modified 
Stern-Volmer model was used to interpret the fluorescence quenching in this system.
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because their end-group functionalization could 
lead to an attractive prospect of having a molecular 
handle for charge transfer, surface modification, 
self assembly, growth of block copolymers, and 
biomarking [5-7]. In addition, polythiophenes 
are environmentally stable, easily processed in 
solution, and can show good synthetic versatility 
including their regiospecific synthesis [8,9]. It 
should be noted however that the superiority 
of polytiophenes as promising organic materials 
depends upon the possibilities of being combined 

Introduction
Conjugated conducting polymers (CPs), such 

as polypyrrole (PPy), polyaniline (Pani), and 
polythiophene (PTh) emerge as an alternative 
matrix for replacing silicon based materials. This 
interest resides in their flexible manufacturing 
and low-cost fabrication, which attracted much 
attention in both fundamental research and 
technological applications, especially in electronics 
and optoelectronics domains [1-4]. Besides, 
polythiophenes gained particular attentiveness 
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solution where the chemical synthetic process 
and molecular design play an important role for 
their efficiency [33,34]. However, most of the 
investigations were carried out mainly on optical 
properties of BHJ thin films rather than on starting 
solutions, which play a key role for predicting the 
performance of final BHJ solar cell thin films.

In the present work, we focus more particularly 
on the study of the influence of oleic acid- capped 
CdSe NPs incorporation into P3OT matrix in 
solution state. We use photoluminescence analysis 
as a preferential tool to study the charge transfer 
occurring at the donor-acceptor interface. The 
effect of NPs concentration on photoluminescence 
properties is also discussed.

Experimental
For the colloidal solution preparation, the 

first step consists of the preparation of CdSe 
nanoparticules (NPs) from a mixture of equal 
volume ratio of cadmium acetate and oleic acid in 
diphenyl ether. The NPs are capped with oleic acid 
by precipitation with copious amounts of methanol 
and are collected by centrifugation and decantation 
as previously reported for ZnSe [35].

The precipitated nanoparticles were recovered 
by adding a small amount of chloroform and 
reprecipitated with methanol. This purification 
process was repeated three times with a dilution 
in chloroform (20 g/l) and the obtained solution 

with different inorganic nanoparticles (NPs) such 
as cadmium selenide (CdSe) [10], titanium dioxide 
(TiO2) [11], ZnO [12], cadmium sulfide (CdS) [13] or 
other inorganic nanoparticles [14] to create organic/
inorganic nanocomposites. This would, therefore, 
offer the possibility of achieving an unlimited variety 
of hybrid organic/inorganic materials with diverse 
functional properties and hence would open new 
horizons in advanced materials research [15,16]. In 
this context, hybrid materials composed of polymer 
and inorganic nanoparticles have shown excellent 
optoelectronic properties promising for potential 
applications such as photovoltaic cells (PV), light 
emitting diodes (LEDs), photodetectors, sensors, 
and transistors [11,17-20]. Numerous investigations 
reported that these applications benefit from 
improved carrier generation and enhanced charge 
transport as well as efficient exciton dissociation in 
PTh-containing organic/inorganic nanocomposites 
[21-28]. However, a particular interest is reserved 
to poly(octyltiophene) P3OT polymer and oleic 
acid (OA) capped CdSe NPs system [29-31] as 
bulk heterojunction (BHJ) photoactive layers in 
hybrid solar cells. It should be pointed out that the 
morphologies and distribution of the NPs in such 
a polymer matrix strongly influence the optical 
and electrical properties, and in particular the 
photovoltaic performances of the composites [32].

It is agreed upon that bulk heterojunction BHJ 
photovoltaic cells can be processed from liquid 

Figure 1: (a) A schematic description of experimental set up for the preparation of P3OT:wt%CdSe colloidal 
solution. (b) Schematic diagram of electronic interaction of CdSe NPs with P3OT polymer.
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equation [37]:

 0.9λD = 
βcosθ

			

Where D is the nanoparticle size, λ is the X-ray 
wavelength of 1.5406 Å, β is the corrected full width 
at half maximum (FWHM) of the coherent domain 
along a direction normal and θ is Bragg diffraction 
angle of the most intense peaks.

By applying the Scherrer equation for the three 
peaks, CdSe NPs size values of 6.5, 10.3 and 6.3 nm, 
respectively were obtained. An average value of 
(8 ± 2) nm was deduced, which agrees with those 
reported in previous works [38,39]. The size of 
NPs is also confirmed with transmission electron 
microscopy (TEM) image presented in Figure 2b, 
which clearly reveals a homogeneous dispersion of 
CdSe nanoparticles with an average diameter of (8 
± 5) nm.

Figure 3 represents comparative emission 
spectra of CdSeNPs and P3OT solutions. For 
cadmium selenide nanoparticles, the emission 
spectra under excitation of 400 nm show a 
maximum of emission at 2.18 eV. This maximum 
is significantly shifted compared to the results 
reported by Okamoto, et al. [40] for CdSe-based 
QDs (1.99 eV) in toluene solution. For instance, 
Ananthakumar, et al. [41] showed that the nature 
of the medium influences the absorption spectra 
of CdSe; the authors attributed this dependence to 
the medium dissociation constant and to the Gibbs 

was stirred for 4h at room temperature to increase 
the solubility of P3OT. The composite solution 
was then prepared by adding CdSe nanoparticles 
to P3OT solution. For our study, five different 
nanocomposites were prepared corresponding to 
the concentrations 0 wt% (pure polymer), 20, 40, 
60 and 80 wt% of CdSe, respectively (Figure 1a). 
Figure 2b describes the obtained P3OT:CdSe hybrid 
materials.

X-rays diffraction analysis was carried out on 
the CdSe powder using a Bruker D4 Diffractometer 
(lambda Kα1 = 1.54056 Å, lambda Kα2 = 1.54439 Å) 
operating at 40 kV and 40 mA. The morphologies 
and size of CdSe- NPs were examined by a 
transmission electron microscope (FEI Tecnai G2 
20). The photoluminescence (PL) spectra for all 
investigated solutions were obtained using a LS 55 
Fluorescence Spectrometer (PerkinElmer) with a 
400 nm excitation wavelength.

Results and Discussion
Figure 2a represents the XRD diffractogram of 

CdSe NPs sample powder, which shows three main 
broad diffraction peaks, of cubic zincblend CdSe 
located at 25.7°, 42.3° and 49.8° corresponding 
to the favorite orientations (111), (220) and (311), 
respectively. All Bragg’s reflections well matched 
the previously reported literature values [36] and 
prove thecrystallinity of CdSe NPs. The average 
crystallite size of CdSe was calculated from the 
highest peaks intensity by using Debye Scherrer’s 

Figure 2: Powder X-ray diffraction pattern of CdSe NPs (a) TEM image of the prepared CdSe nanoparticles (b).
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nm), respectively. We assume in the present work 
the existence of at least four bands characteristics 
for the invariable matrix ascribed to carbonyl-
related chromophore groups that are inherent to 
P3OT. The analysis of the spectrum shows that 
the difference in the energy between consecutive 
peaks is in the range of 0.04-0.07 eV, which proves 
that the photoluminescence is governed by vibronic 
transitions [45]. Furthermore, the contribution 
centered at 583 nm (2.12 eV) can be attributed 
to the formation of the quinone structure, while 
that centered at 645 nm (1.92 eV) may be assigned 
to the pristine structure [46-48]. Moreover, the 
maxima situated at 2.08 eV and 2.01 eV are 
probably specific to vibronic transitions of the C=C 
stretching mode in the thiophene rings [49].

As it can be seen from Figure 5, the 
photoluminescence spectra of CdSe NPs show an 
intense emission peak at 567 nm with the presence 
of two other shoulders may be originate from the 
nom homogeneity of the NPs size. Kumari, et al. 
found a maximum of photoluminescence intensity 
at 550 nm for CdSe nanoparticles capped with oleic 
acid of size equal to 7 nm in toluene solution [50]. 
Sharma, et al. proved that oleic acid is a particular 
ligand that yields much more stable active metal 
nanoparticles than other saturated fatty acids. 
Moreover, they showed that OA passivates most of 
the vacancies and trap sites on the CdSe surface thus 
increasing the photostability of nanoparticles [51]. 
Gerou, et al. studied CdSe NPs emission spectrum 

free energy of the entire phase transfer process 
that could exist. For poly(8-octylthiophene), the 
emission band response is in the range of 1.8-
2.2 eV, and no P3OT aggregates are detected for 
which the emission occurs in the range 1.3-1.8 eV 
[42]. The maximum of emission observed in our 
measurement is around 2.12 eV. In addition, the 
profile is not symmetric and a shoulder could be 
albeit detected around 2 eV. It should be noticed 
that the emission spectrum in solid state is generally 
expected to split because of the local single chain 
conformation and chain-chain interactions [43]. In 
our case, chloroform, which is a good solvent for 
the title polymer, might induce suppression of such 
interactions and only the solvent-solute interaction 
would be predominating.

To have a better understanding of the 
photoluminescence PL properties of pure P3OT 
polymer and P3OT:%CdSe hybrid material, the 
PL curves were analyzed using a multi-Gaussian 
functions, as shown in Figure 4. The profile of 
the photoluminescence band is typical of a multi-
phonon process, i.e., a material in which the 
relaxation occurs by several paths, involving the 
participation of numerous states within the band 
gap of the material [44]. This behavior is probably 
related to the presence of additional electronic 
levels in the forbidden band gap of the material.

The P3OT spectrum displays four peaks of 
fluorescence centered at 2.12 eV (583 nm), 2.08 
eV (595 nm), 2.01 eV (616 nm) and 1.92 eV (645 

Figure 3: Photoluminescence spectra of CdSe-NPs and P3OT solutions.
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Figure 4: Deconvolution of PL curve, (a) P3OT, (b) P3OT:20% CdSe, (c) P3OT:40% CdSe, (d) P3OT:60% CdSe and 
(e) P3OT:80% CdSe samples.

The first feature around 583 nm and the second 
at about 595 nm corresponding to a yellow 
component, the third one (≈ 616 nm) corresponds 
to orange component and the last peak (≈ 645 nm) 
corresponds to a red component.”

The same order of colors is observed for 

with deconvolution method. The spectrum was 
decomposed into a main PL band, positioned at 
543 nm and two weak bands shifted to the red, at 
576 and 670 nm [52].

As shown in Figure 4a, the PL spectrum of pure 
P3OT polymer consists of four PL components. 
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Figure 4e). Such a behavior could be assigned to 
a large number of NPs incorporated in polymer 
matrix. Similar case is observed in P3EEET-
ZnO nanocomposite reported by Huan-Ming 
Xiong where the red shift was attributed to NPs 
aggregation causing a significant decrease in 
polymer photoluminescence [54].

The PL intensity was at the maximum for pure 
P3OT and decreases with increasing CdSe NPs 
concentration (Figure 6a). The observed quenching 
phenomenon is mainly due to the concentration 
effect. However, one of the possible mechanisms 
that may occur, is the direct charge transfer between 
CdSe NPs and P3OT, leading to the formation of 
isolated electron-hole pairs. Such a situation could 

P3OT:20%CdSe and P3OT:40%CdSe. Noting that 
each color represents different types of electronic 
transition linked to a specific structural molecule 
arrangement [53]. On the other hand, a red shift is 
observed for samples containing a large number of 
nanoparticles (P3OT:60%CdSe and P3OT:80%CdSe 
samples). The last peak (≈ 716-727 nm) observed 
for P3OT:60%CdSe and P3OT:80%CdSe samples, is 
attributed to red component color and it represents 
different types of electronic transition linked to a 
specific structural nanocomposite arrangement 
[53]. All the obtained components with the related 
assignment are gathered in Table 1.

Furthermore, we observe a slight red shift of 
the third and the fourth features (Figure 4d and 

 
Figure 5:  Photoluminescence spectrum of CdSe in chloroform as a function of wavelength.

Table 1: Photoluminescence peaks of pure P3OT and P3OT:wt% CdSe samples.

Sample PL pick 1 PL pick 2 PL pick 3 PL pick 4

P3OT 583 nm (2.12 eV)

yellow

595 nm (2.08 eV)

yellow

616 nm (2.01 eV)

orange

645 nm (1.92 eV)

red
P3OT:20%CdSe 582 nm (2.13 eV)

yellow

593 nm (2.09 eV)

yellow

610 nm (2.03 eV)

orange

639 nm (1.94 eV)

red
P3OT:40%CdSe 583 nm (2.12 eV)

yellow

596 nm (2.08 eV)

yellow

618 nm (2.00 eV)

orange

677 nm (1.83 eV)

red
P3OT:60%CdSe 584 nm (2.12 eV)

yellow

617 nm (2.00 eV)

Orange

686 nm (1.80 eV)

red

716 nm (1.73 eV)

red
P3OT:80%CdSe 570 nm (2.17 eV)

Yellow

603 nm (2.05 eV)

Orange

681 nm (1.82 eV)

red

727 nm (1.70 eV)

red
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Figure 6: (a) Photoluminescence spectra of P3OT:%CdSe colloidal solutions showing quenching effects. (b) 
Normalized photoluminescence spectra of P3OT:%CdSe colloidal solutions.

this overlap. Figure 8 summarizes the different 
routes expected for exciton and charge transfer in 
P3OT:CdSe blend.

In addition, the introduction of CdSe NPs, acting 
as a modifying agent, may affect the effective 
conjugation length of P3OT that influences both 
the dynamics of excited species and recombination. 
To explain the fluorescence quenching, 
Ananthakumar, et al. reported that the presence of 
CdSe in P3HT matrix suppressed the recombination 
by splitting the charges at the interface, resulting in 
the production of holes in polymer and electron in 
CdSe NPs [41].

To shed more light into the role of CdSe NPs 
and for better comparison, we normalized the PL 
intensities in Figure 6b. As shown in this figure, no 

induce a non-radiative energy transfer responsible 
for emission quenching [55].

It is well established that exciton energy transfer 
process of this P3OT:%CdSe composite is followed 
by Förster energy transfer (FRET). FRET arises 
from the oscillating dipole–dipole interaction that 
occurs when the donor emission (P3OT emission 
spectra) overlaps the acceptor absorption (CdSe 
absorption spectra) as well as to the small distance 
between the donor and the acceptor, which 
would be of few nanometers. Noting that both 
FRET and Förster energy transfers are important 
in understanding the optoelectronic properties 
of hybrid nanosystems [56-58]. The key condition 
for efficient energy transfer is that the absorbance 
spectrum of acceptor must overlap adequately with 
the emission spectrum of donor. Figure 7 illustrates 
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Figure 7: Overlap of CdSe NPs absorbance and P3OT photoluminescence.

 
Figure 8: Schematic routes expected for exciton dissociation and charge transfer in P3OT:CdSe composite: 
(a) Exciton formation in P3OT, followed by electron transfer to CdSe, (b) Exciton formation in P3OT, followed 
by energy transfer to CdSe, then by hole transfer to P3OT, (c) Exciton formation in CdSe, followed  by hole 
transfer to P3OT (d) Charge separated state. 
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Where I0 and I are the fluorescence intensities 
observed in the absence and presence of quenchers, 
respectively, [Q] is the quencher concentration 
and Ksv is the Stern-Volmer quenching constant. 
The Ksv is associated to the excited state lifetime 
in the absence of quencher τ0 and the bimolecular 
quenching rate constant Kq as follows [59]:

Ksv = Kq τ0					              (2)

Kumari, et al. found straight line plots of I0/I 
versus the CdSe concentration [Q] of P3HT and 
MEH-PPV polymers, respectively by CdSe capped 
with oleic acid (OA) and CdSe capped with tri-n-
octylphosphene-oxide (TOPO) and confirm the 
occurrence of dynamic quenching [50]. In our case, 
it is observed that I0/I plot shows that experimental 
data result in positive deviation from a linear S-V 
relation [60-62]. This positive deviation is attributed 
to various processes such as formation of charge 
transfer complexes, intersystem crossing, static 
and dynamic quenching [63].

Recall that for the quenching phenomena in no 
composite solutions, the fractional intensity (I0/I) 
is given by the product of both static and dynamic 
quenching [64]:

I0/I = (1 + Ksv [Q]).(1 + Ks [Q])		          (3)

Where Ksv and Ks the dynamic and static 
quenching constants, respectively. Figure 9 shows 

clear change could be observed for P3OT:20%CdSe 
NPs compared to the pristine P3OT. As soon as the 
concentration of NPs increases, a clear second band 
appeared at ca. 2 eV as a shoulder for 40wt% and 
became clearly visible in P3OT:60%CdSe sample. 
This feature may be attributed to the emission 
of a second type of chromophores with shorter 
conjugation length. However, the second resolved 
broad band observed for 60 wt% NPs concentration 
at ca.1.76 eV is a consequence of inter chain 
interaction. At high CdSe NPs concentration levels, 
two clear distinct bands are observed at 2.15 
and 1.70 eV, respectively. A closer look at these 
energy values, we suggest that the first emission 
peak can be attributed to CdSe NPs (see Figure 
3). In contrast, the second one, observed at lower 
energy, may correspond to a small amount of 
chains-chain aggregation of the P3OT matrix. Note 
that the existence of two emission centres (yellow/
red) could be rationalized in terms of chain packing 
effects, resulting from the presence of high CdSe-
NPs concentration that would create high and 
low energy chromophores, in agreement with 
the literature results [42]. A number of processes 
can result in a decrease of photoluminescence 
intensity, which is referred to as quenching. In the 
simplest case, the collisional quenching follows the 
Stern-Volmer equation [58]:

I0/I = 1 + Ksv [Q]  				            (1)

 
Figure 9: Simultaneous presence of static and dynamic component in the fluorescence quenching. The dash 
line represents the plot of Eq.(3).
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photoluminescence quenching mechanism would 
be restricted by the presence of residual ligand 
species and phase segregation effects in P3OT:CdSe 
nanocomposite.
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