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Abstract
We describe diffractive and focusing properties of oblique incident vector vortex beams under tight 
focusing conditions. By dividing the effective pupil area of the focus lens into two parts for simple 
integration, using the electromagnetic wave polarization vector diffraction theory, the intensity 
distributions of oblique incident vector Laguerre-Gaussian beams focused by high numerical aperture 
lens are calculated and analyzed, the structural changes in the transverse and the axial direction near the 
focus plane are observed, numerical simulation show that, field intensity distributions are changed with 
the different oblique incident angle and topological charge of Laguerre-Gaussian beam, the distortion 
and asymmetry of intensity distribution are shown in different cases. This research can be applied for 
trapping and manipulating particles, super-resolution fluorescence microscopes.
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Introduction
Recently, vortex beams have been studied extensively and have wide applications, such as optical 

communications [1-3], optical imaging [4]. Generating multiple vortex patterns beam by a diffraction 
grating [5], the conversion of polarized laser beams from a radial to an azimuthal polarization, or 
vice versa [6], the generation of beams with different polarization states in an anisotropic crystal [7]. 
Application of the vortex beam for trapping and manipulating particles, such as controlling the chirality 
of metal nanostructures [8], producing chiral nanoneedles on thin films [9]. The use of optical vortices to 
generate a controllable optical cage [10]. it is quite difficult to create 3D optical cage with identical in all 
directions light barriers at the usual focusing (from one side), since the axial resolution is several times 
worse than the transverse one, to decrease the axial extension of the focal spot, different techniques are 
used, including 4pi scheme with two opposing lenses [11-13]. Also, three-dimensional focus shaping may 
be realized by supplementing the focusing lens with annular, or choosing the suitable polarization states 
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of vector beams [14], or more complex diffractive optical elements [15,16].

A tight-focusing vortex beam for achieving the smallest possible focal spot is an essential issue in a 
variety of applications. To reduce the size of the focal spot under sharp focusing, including high-aperture 
focusing system [17,18], stimulated emission depletion microscopy [19]. Laguerre-Gaussian beams being 
focused through a stratified medium [20].

The astigmatic transformations of focused vortex beam were studied by many scientists, such as an 
oblique incidence of an axially symmetric beam onto an optical element produce elliptic beams [21,22]. 
This effect is closely related to astigmatic transformations, used for the formation of Laguerre-Gauss modes 
from Hermite-Gauss modes [23,24] and for analyzing the structure of vortex beams [25-27]. Moreover, 
the sharp focusing of Laguerre-Gauss beams with astigmatic distortion, polarization state affects the 
longitudinal component of the electric vector of the light field [28].

But by high numerical aperture (NA) lenses, beam field of oblique incident vortex beam have some new 
character, can be used for trapping and manipulating particles, it need more study, Motivated by these 
facts, a basic goal of this paper is to examine the diffractive and focusing properties of oblique incident 
Laguerre-Gaussian (LG) beams focused by high numerical aperture (NA) lenses near the focal region.

Analysis and Methodology
An LG beam oblique is incident on high NA lens, which is schematically shown in Figure 1a. The angle 

between incident beam and z0 axis is α, we rotate the coordinate system to make incident beam parallel 
to z axis, shown in Figure 1b.

We note the arrangement of the optical lens system in Figure 1, and use the x-axis polarized Laguerre-
Gaussian beam [29].
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Fresnel approximation of the classical scalar diffraction theory can only be applied to the paraxial 
optical system or the low numerical aperture. It has lost its effectiveness in the high NA system. In order 
to accurately predict the performance of high NA, we use the electromagnetic wave polarization vector 
diffraction theory. The space dependent electric vectors ( )E r

ur r  in the image space of the optical system 
have the integral representation [30,31]
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Where λ  is the wavelength, Σ is the wavefront surface over the exit pupil of a lens, N̂  is a unit ray 
vector (normal to the wavefront), sE

ur
 is electric field at the exit pupil, k is the wave number in medium. O 

is geometrical focus, X is an observation point; Y is a point on the exit pupil surface, the distance OX is r
r

, the distance OY is 'r
ur

, the distance YX is 'R r r= −
r ur

 ( shown in Figure 1).

The evaluation of the vector Debye integral requires a mathematical explanation of the effective pupil 
area in Figure 1. As illustrated in Figure 2a, the original circular pupil region and the oblique region overlap 
the portion to form an effective pupil. The normalized pupil function ( ),P θ φ  is derived from the exit pupil 
of the image space of the spherical coordinates (θ : polar angle, φ : azimuthal angle). In order to facilitate 
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the calculation of the integral, the circular asymmetric pupil in the oblique plane imaging is divided into 
1Σ  (rotationally symmetric part) and 2Σ  (the rest area). The pupil functions for 1Σ  and 2Σ  are [30]
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Where Cθ , maxθ , ( )1φ θ , and ( )2φ θ  are defined in follow. The values of θ , φ  are expressed as a function 
of α , NA and n .

In Figure 2, the equation of the plane ABC is ( )2c 1 sin  = 0y z tg NA nα α− + − , plugging this equation into 

Figure 1: Conceptual diagram of oblique lens system. (a) An oblique angle α incident lens system. (b) An 
oblique plane (xa, ya) inclined by α with respect to the focal plane (x, y). (c) Equivalent lens system image space 
coordinate representation; (d) O: Geometrical focus; X: An observation point; Y: A point on the exit pupil 
surface of the lens, the distance YX is  = 'R r r−

 
.
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the unit sphere equation give the coordinate values of the point C as

2
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( ) ( )1 2  = φ θ φ θ π                      (10)

The electric field near the focal area of the oblique lens can be obtained from equation (1) to be

Figure 2: The pupil geometry (a) Effective pupil geometry in the normalized object space; (b) The overlapping 
area is an effective pupil.



• Page 5 of 12 •Xu et al. Int J Opt Photonic Eng 2023, 8:053 ISSN: 2631-5092 |

Citation: Xu Q, Yan S, Wu Z (2023) Focusing of Anoblique Incident Laguerre-Gaussian Vector Beam by a High Numerical-Aperture Lens. 
Int J Opt Photonic Eng 8:053

( )

( )

2 2
2 2

0 0 02

sin cos cos
 = exp - 2 2 exp sin cos cos sin cos

cos sin

             

             exp sin cos sin sin cos

mx
m

y n m

z

E
E L im

w w w
E

ik x y z

φ θ φ
ρ ρ ρ φ φ φ θ φ φ

φ θ

θ φ θ φ θ

−
Σ

 +                  ⋅ − +                          

× − + −

∫∫

( ) ( )
1 2

1
2, , cos sin

             

P P d dθ φ θ φ θ θ φ θΣ Σ ⋅ +    

            (11)

Here  = sin cosx r θ φ , y = sin sinr θ φ ,  = cosz r θ− , (a Cartesian-to-spherical coordinate relation).

The total intensity can be obtained
22 2 =  = x y z x y zI I I I E E E+ + + +                     (12)

Then the two-dimensional electric field over an oblique plane with a oblique angle α  is
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For the circular symmetry region 1∑ , the double integration is changed into a single integral. For ∑ , 
integration can be reduced by half. These considerations lead to

( ) 2,  = a bI x y I Iα α +                                  (14)
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The time-averaged electrical energy density or intensity can be obtained by the modulus squared of 
the electric fields. The total intensity distribution at the focal plane is the sum of the longitudinal and 
transverse components.

Numerical Simulation Results
In order to probe further the field structure at the focal plane, we have performed numerical calculations 

for the intensity distributions. Assuming that the light is an x-axis polarized Laguerre-Gaussian beam (the 
topological charge m = 1, n = 1), the numerical aperture of the lens NA = 1.4, the wavelength of the beam 

0  = 519 nmλ , the diameter of optical aperture is 2.0 cm, the FWHM (full width at half maxima) of the laser 
beam is 0.5 cm.

In Figure 3a, Figure 3b, Figure 3c and Figure 3d, α = 0°, the intensity is equal to the conventional intensity 
of the circular aperture system, intensity profile of x component (Ix) has two peaks, intensity profile of y 
component (Iy) has eight peaks (four secondary peaks around four main peaks), Iy is about 1% of the total 
intensity, intensity of z components (Iz) is about one third of the total intensity, Iz has three peaks (two 
secondary peaks around a main peak), the x-direction intensity is the main part of the total intensity. As 
oblique angle α = 10°, the intensity distribution is distorted, two peaks of Ix become asymmetrical, most 
peaks of Iy degenerate, Intensity Iz decreases slightly, and the distortion is bigger when the oblique angle 
α = 20°.

Figure 4a, Figure 4b, Figure 4c, Figure 4d, Figure 4e, Figure 4f, Figure 4g, Figure 4h, Figure 4i, Figure 4j, 
Figure 4k and Figure 4l shows the oblique incident beam with different the topological charge (m = 1, n 
= 3; m = 3, n = 3; m = 3, n = 5), the beam incident angle α = 10°, NA = 1.4, other parameters are same as 
which in Figure 3. The intensity distribution of first mode (the topological charge m = 1, n = 3) is shown in 
Figure 4a, Figure 4b, Figure 4c and Figure 4d, The intensity Ix is about 75% of total intensity I. The intensity 
Iy is about 0.1% of total intensity I, there are four main peaks at the center and sub-peaks around. The 
intensity Iz is about 25% of total intensity I, there is one main intensity peak surrounded by two sub-peaks. 
The second modes (the topological charge m = 3, n = 3) are shown in Figure 4e, Figure 4f and Figure 4g, Ix is 
nearly 80% of total intensity I, the intensity Ix distribute in a circle, have eight main lobes, upper (according 
to y axis direction) two lobes are overlapped. Iy is about 2% of total intensity I, The intensity distribution 
have ten main lobes. For Iz, is about 20% of total intensity I, some of lobes are overlapped. The intensity 
distributions of third mode (the topological charge m = 3, n = 5) are shown in Figure 4i, Figure 4j, Figure 4k 
and Figure 4l, which is similar to that of the second mode. For all these modes, the structure of the field 
intensity near the focal area significantly changes to an asymmetrical shape, and distribution of I is mainly 
depended on Ix.

Conclusions
We analyzed focusing of an oblique incident Laguerre-Gaussian vector beam by a high numerical-

aperture lens. Based on the Debye-Wolf vector diffraction theory, we formulate the electrical field 
distribution. Numerical simulation has also been performed, three-dimension intensity distributions of an 
oblique incident Laguerre-Gaussian beam on the focal plane of the lens were gotten, and the total intensity 
distribution on the focal plane, which is the sum of the longitudinal and transverse components, were 
analyzed in detail, the intensity profile of the focused Laguerre-Gaussian beam has several peaks related 
with topological charge. For normal incident beams, intensity profiles are symmetric, when the beam is 
obliquedly incident on the lens, value of some intensity peaks increase, as value of others decrease, the 
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(a) Ix (a.u.), α = 0°.                               (b) Iy(a.u.), α = 0°. 

 

(c) Iz(a.u.), α = 0°.                                 (d) I(a.u.), α = 0°. 

 

(e) Ix(a.u.), α = 10°.                               (f) Iy (a.u.), α = 10°. 

 

(g) Iz(a.u.), α =10°.                               (h) I(a.u.), α = 10°. 

 

(i) Ix(a.u.), α = 20°.                            (j) Iy(a.u.), α = 20°. 

 

(k) Iz(a.u.), α = 20°.    (l) I(a.u.), α = 20°. 
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(a) Ix (a.u.), α = 0°.                               (b) Iy(a.u.), α = 0°. 

 

(c) Iz(a.u.), α = 0°.                                 (d) I(a.u.), α = 0°. 

 

(e) Ix(a.u.), α = 10°.                               (f) Iy (a.u.), α = 10°. 

 

(g) Iz(a.u.), α =10°.                               (h) I(a.u.), α = 10°. 

 

(i) Ix(a.u.), α = 20°.                            (j) Iy(a.u.), α = 20°. 

 

(k) Iz(a.u.), α = 20°.    (l) I(a.u.), α = 20°. 

Figure 3: The intensity distribution of an x-polarized Laguerre-Gaussian beam (m = 1, n = 1) on the focal plane 
with different oblique incident angles α, NA = 1.4.
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(a) Ix(a.u.), m = 1, n = 3.   (b) Iy(a.u.), m = 1, n = 3. 

 

(c) Iz(a.u.), m = 1, n = 3.    (d) I(a.u.), m = 1, n = 3. 

 

(e) Ix (a.u.), m = 3, n = 3.   (f) Iy(a.u.), m = 3, n = 3. 

 

(g) Iz(a.u.), m = 3, n = 3.    (h) I(a.u.), m = 3, n = 3. 

 

(i) Ix(a.u.), m = 3, n = 5.    (j) Iy(a.u.), m = 3, n = 5. 

 

(k) Iz(a.u.), m = 3, n = 5.    (l) I(a.u.), m = 3, n = 5. 



• Page 10 of 12 •Xu et al. Int J Opt Photonic Eng 2023, 8:053 ISSN: 2631-5092 |

Citation: Xu Q, Yan S, Wu Z (2023) Focusing of Anoblique Incident Laguerre-Gaussian Vector Beam by a High Numerical-Aperture Lens. 
Int J Opt Photonic Eng 8:053

 

(a) Ix(a.u.), m = 1, n = 3.   (b) Iy(a.u.), m = 1, n = 3. 

 

(c) Iz(a.u.), m = 1, n = 3.    (d) I(a.u.), m = 1, n = 3. 

 

(e) Ix (a.u.), m = 3, n = 3.   (f) Iy(a.u.), m = 3, n = 3. 

 

(g) Iz(a.u.), m = 3, n = 3.    (h) I(a.u.), m = 3, n = 3. 

 

(i) Ix(a.u.), m = 3, n = 5.    (j) Iy(a.u.), m = 3, n = 5. 

 

(k) Iz(a.u.), m = 3, n = 5.    (l) I(a.u.), m = 3, n = 5. 

Figure 4: The intensity of an x-polarized Laguerre-Gaussian beamon the focal plane with different topological 
charge, α = 10°, NA = 1.4.



• Page 11 of 12 •Xu et al. Int J Opt Photonic Eng 2023, 8:053 ISSN: 2631-5092 |

Citation: Xu Q, Yan S, Wu Z (2023) Focusing of Anoblique Incident Laguerre-Gaussian Vector Beam by a High Numerical-Aperture Lens. 
Int J Opt Photonic Eng 8:053

distribution profile is asymmetric. The distortion of light beams intensity distribution get greater with the 
increasing oblique incident angle. We also analyze the distortions of light beams intensity distribution 
with different topological charge. In practical application, it is an important reference for trapping and 
manipulating particles, super-resolution fluorescence microscopes.
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