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Introduction
Free space optical (FSO) communication systems 

are very much promising for future optical wireless 
communications [1-4]. However, the performance 
is highly degraded due to the effect of atmospheric 
turbulence which leads to intensity and phase 
fluctuations and seriously affects the stability and 
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An analytical approach is developed to evaluate the BER performance of a FSO communication 
link using RF OFDM subcarrier modulation with optical intensity modulation and a direct 
detection receiver. Analysis is carried out to find expressions for the output photodetector 
current and carrier to noise power ratio at the output of the OFDM demodulator taking into 
account the effect of atmospheric turbulence of the free space optical channel. The average bit 
error rate is evaluated numerically considering log-normal and gamma-gamma distributions 
for weak and strong atmospheric turbulence. The analytical results are evaluated for different 
system and channel parameters such as number of OFDM subcarriers, turbulence variance, 
link distance etc. The computed results show that the system suffers power penalty due to 
atmospheric turbulence which can be significantly reduced by increasing the number of OFDM 
subcarriers at a given data rate. For example, for weak turbulence power penalty at a BER of 
10-9 is found to be 18 dB, 14.5 dB and 12 dB corresponding to the number of OFDM subcarrier of 
16, 32 and 64 respectively for link distance of 3.6 km at a data rate of 10 Gbps. It is also noticed 
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reliability of the FSO communication system [5-6].

Further, compared to a multiple subcarrier 
modulated system a single carrier modulated 
system suffers more severely due to inter symbol 
interference (ISI) caused by the dispersive fading 
of FSO channels and thereby needs more complex 
equalization [7-12].
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OTDM and OFDM schemes are in literature 
to increase the data rate in optical fiber 
communication [13-16], but each of them reaches 
the desired capacity in a different way. OTDM 
allows us to time-interleave low duty-cycle and 
low rate data tributaries which simplifies the speed 
requirements of the transmitter equipment [13,14]. 
The challenging points in OTDM are the time-
demultiplexer which relies on the femto-second 
response applicable on guided wave system.

On the other hand, orthogonal frequency 
division multiplexing (OFDM) is attractive for its 
capability of overcoming the effect of ISI due to 
increased robustness against frequency selective 
fading and narrow-band interference [15-17]. 
The flexibility of OFDM provides opportunities 
to use advanced techniques such as adaptive 
loading, transmit diversity and receiver diversity to 
improve transmission efficiency. A hybrid optical 
communication system consists of RF OFDM and 
optical intensity modulation can be used to improve 
the performances of FSO communication system 
[18,19]. Previous works [18,19] on OFDM based 
optical wireless communication are carried out by 
simulation and experimental demonstrations.

In this paper, we develop an analytical approach 
to investigate the performance of a FSO commu-
nication link using RF OFDM modulation with op-
tical intensity modulation considering weak and 
strong atmospheric turbulence. Analysis is devel-
oped to find the BER performance results analyti-
cally in terms of carrier to noise ratio and optimum 
number of OFDM subcarriers, link distance etc. for 
several values of other parameters. The analytical 
results are verified with the computer simulation 
work that is reported in literature.

System Model
Figure 1 shows the block diagram of an OFDM 

FSO communication system with an optical direct 
detection receiver followed by RF synchronous 
demodulator. According to the diagram the input 
data stream is converted to parallel bit stream 
which is transmitted using N OFDM subcarriers. 
Each data channel is mapped with ASK modulator 
and the outputs of the modulators are given input 
to Inverse Fast Fourier Transform (IFFT) block. After 
that, Cyclic Prefix (CP) is added to mitigate the ISI 
effect and the overall output is sent to parallel 
to serial convertor. The output OFDM signal is 
then given input to an electro optic intensity 
modulator (EOIM) and the output of EOIM signal 
is then transmitted over an atmospheric turbulent 
channel.

At the receiving end the optical signal is 
detected by a direct detection receiver and the 
output photodetector current is amplified by a 
preamplifier. The output of the preamplifier is 
the OFDM signal with the effect of atmospheric 
turbulence along with receiver noise. The received 
OFDM signal is passed through a serial to parallel 
converter and cyclic prefix is removed. After 
removing the CP, the received samples are put to 
a Fast Fourier Transform (FFT) block. Finally, the 
RF outputs are demodulated using synchronous 
demodulators followed by decision circuit (DC). 
The output of the DC is sent to parallel to serial 
converter to get the original data stream.

Theoretical Analysis
Let, Sk represents the k-th input data symbol 

consisting of N number of bits ranging from ɑk
1 to 
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Figure 1: Block diagram of ASK Mapped OFDM FSO communication system with an optical direct detection 
receiver followed by RF synchronous demodulator.
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and ka is the intensity modulation index and ωc is 
the optical carrier angular frequency.

The received optical signal at the input to 
receiver photodetector can be expressed as:

21
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nlN N j j tj N
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n j
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(7)

Where PR = PT e
-αL is the received optical power, 

α is the attenuation coefficient of the atmospheric 
channel, L represents the link distance, nb is the 
background radiation intensity and I(t) represents 
the turbulence induced fading.

The signal photocurrent id at the output of the 
PD is given by:
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Where Rd is the responsivity of the photodetec-
tor.

The received OFDM signal is then given by:
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Now the received OFDM signal is put to a 
serial to parallel converter and cyclic extension is 
removed from the output. Then the output is fed 
to FFT block and the output of the FFT block can be 
expressed as:

{ }
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The output of the FFT is given input to RF 
synchronous demodulators. The signal at the 
output of the RF synchronous demodulator can be 
shown to be:

^

0( )  = 2 ( ) ( ). ( )j j
k d R a k s jS t R P I t k a p t kT A n t− +

    
(11)

 Where no(t) represents the noise due to photo-
detector shot noise and receiver thermal noise.

Considering Aj = Asc (for j=1: N), the variance of 
the output noise no(t) for a given value of I(t) = I can 
be expressed as:

ɑk
N. The symbol is given input to a serial to parallel 

converter and output parallel bits {ɑk
j, j = 1: N} are 

transmitted using N subcarriers. Thus, ɑk
j is the j-th 

bit of the k-th symbol and is used to modulate the 
j-th subcarrier.

Let mj(t) represents the message at the j-th 
branch of the serial to parallel converter. Then mj(t) 
can be given as:

( )( ) = j j
k sm t a p t kT−           (1)

Where { j
ka  = 0,1}, Ts = N Tb, Tb representing the 

bit period while Ts represents the symbol period 
and p(t) is the pulse shape.

The electrical field output of j-th subcarrier ASK 
modulator is given by:

( ) = ( )j j
k k s j jS t a p t kT A cos tω−          (2)

Where ωj is the j-th RF angular frequency and Aj 
is the amplitude of the j-th subcarrier.

The output of the subcarrier modulator 
corresponds to k-th symbol is given by:

1
( ) = ( )

N
j

k k s j j
j

S t a p t kT A cos tω
=

−∑          (3)

Now the output of the subcarrier modulates, sk 
are given input to IFFT block and the output of IFFT 
can be represented as:

{ }
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The IFFT block samples SIFFT(t) at t = lTs which 
provides

{ }
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To deal with inter carrier interference, a cyclic 
extension is added with the output of IFFT block. 
With the cyclic extension, the actual OFDM symbol 
duration is increased from Ts to T = Ts + Tg, where Tg 
denote the length of a cyclic extension. The samples 
are passed through a parallel to serial converter to 
produce OFDM signal.

The output OFDM signal is then used to intensity 
modulate the laser diode using an electro optic 
intensity modulator.

The output of the optical intensity modulator 
can be expressed as:

,( ) = 2 1 cj t
opt T a o le t P k A e ω +           (6)

Where PT represents the transmitter laser power 
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Where σsh
2 and σth

2 represents variance of shot 
and thermal noise respectively, T is the receiver 
noise temperature and RL is the load resistance.

Now the Carrier to Noise Power Ratio 
conditioned on a given turbulence induced fading 
I can be expressed as:
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The conditional BER for n-th subcarrier channel 
can be found as [17]:

( )1( ) = 
2 2 2n

CNR I
BER I erfc

 
  
 

                    (14)

and the average BER can be obtained by 
averaging the conditional BER over the pdf of I as:

 = ( ). ( )n nBER BER I p I dI∫                      (15)

Where p(I) represents the probability density 
function of the turbulence induced irradiance. 

For weak turbulence p(I) is represented by a 
lognormal distribution given by [5]:
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Where I0 is the signal irradiance without 
scintillation represents the σI

2 ryotov variance given 
by [5]:

7 112 2 6 6 1.23I nC k Lσ =  and 2
Iσ  < 1       (17)

and Cn
2 is the Refractive index structure 

parameter and k represents the wave number 
which is 2π/λ and λ represents the operating wave 
length which is 1550 nm.

For strong turbulent condition p(I) is given by a 
gamma-gamma distribution [16]:

( )( )/2 1
2

( )
2( )( ) = (2 ), 0

( ) ( )
p I I K I I

α βα β

α β
αβ αβ
α β

++ −

− >
Γ Γ

     (18)

Where α and β are PDF parameters describing 
the scintillation experienced by plane waves, and in 
the case of zero-inner scale.

The average bit error rate can be obtained as:

1

1 = 
N

n
n

BER BER
N =

∑         (19)

Results and Discussion
Following the analytical approach presented 

in previous section, we evaluate the performance 
results of an OFDM FSO communication with 
system parameters shown in Table 1.

The plots of BER versus received optical power 
are shown in Figure 2 as a function of the link 
distance, L. From the plots it is observed that the 
error performance deteriorates as link distance is 

Table 1: System Parameters used for computation.
Symbol Parameters Values
Rb Data rate 10 Gbps
B Bandwidth of RF BPF 20 GHz
N Number of OFDM subcarrier 4~64
λ Laser wavelength 1550 nm
Rd PIN photodetector Responsivity 0.85
ka Optical modulation index 1
L Link distance 1000 m - 3600 m
PR Received power -60 to 30 dBm
Asc Subcarrier amplitude 1.0

2
nC Refractive index structure Parameter 10-14 m-2/3 and 10-15 m-2/3
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environmental disturbance up to the connection 
separation of 2500 m.

The plots of power penalty due to the effect of 
weak atmospheric turbulence at BER 10-3, 10-6 and 
10-9 with respect to the link distance are shown 

varied from 1000 m to 3600 m. Additionally, an 
expansion in L over 2600 m results in a progressively 
extreme execution disintegration contrasted with 
link separation of 1000 m to 2500 m. It is apparent 
that, the BER execution is less instigated by the 
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Figure 2: Plots of BER versus received opt. power with variation of link distance (meter) for OFDM FSO system.
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Figure 4 shows the plots of BER versus received 
optical power for various number of OFDM 
subcarriers for a FSO system. As expected, the 
system performance gradually improves with 
increase in number of subcarriers.

Figure 5 shows the plots of receiver sensitivity 
at BER of 10-9 versus number of OFDM subcarrier 

in Figure 3. The power penalties are calculated 
numerically from the plots of BER curves with 
respect to the link distance. It is found that for same 
system configuration the power penalty is higher 
at higher link distance. Further power penalty is 
found to be more for BER of 10-9 compared to 10-3 
and 10-6.
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FSO system with different values of the data rate. 
At higher data rate, system is more affected due to 
atmospheric turbulence.

The plots of power penalty at BER = 10-9, versus 
data rate for various number of OFDM subcarrier 
in FSO system are shown in Figure 7. From the 

in FSO communication system as a function of link 
distance under turbulent condition. It is found that 
with increase in number of OFDM subcarrier the re-
ceiver sensitivity gradually improves at a given BER.

Figure 6 shows the BER performance with 
respect to the received optical power for OFDM 
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data rate till 15 Gbps. After that the power penalty 
remains unchanged.

The error performances of OFDM FSO link for 
combinations of OFDM subcarriers with variable 
refractive index structure parameter, Cn

2 are shown 

figure it is found that the power penalty increases 
with increase in data rate to a certain value. For 
example, for 1 Gbps data rate the system suffers in 
power penalty of 3 dB for 64 OFDM subcarriers and 
power penalty gradually increases with increase in 
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of the figure it is found that, by applying RF OFDM 
subcarrier modulation in FSO communication 
the link performance improves gradually with 
increasing the number of subcarriers. Overall the 
system demands less power compared to non-
orthogonal condition. For example, the required 
power for 64 subcarriers under non-orthogonal 
condition is almost similar to the power required 

in Figure 8. The error performance improves with 
the improvement of refractive index structure 
parameter, Cn

2 from 1 × 10-14 m-2/3 to 1 × 10-15 m-2/3 
for same number of OFDM subcarriers.

The BER performances under orthogonal 
and non-orthogonal conditions with various RF 
subcarriers are shown in Figure 9. From the analysis 
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for 4 subcarriers under orthogonal condition.

The plots of power penalty at a BER of 10-9 as a 
function of OFDM subcarriers are shown in Figure 
10 with two different refractive index structure 
parameters for both strong and weak turbulent 
condition. It is found that by changing the value 
of refractive index structure parameter, Cn

2 from 
10-14 to 10-15, the system power penalty reduces 
significantly. Moreover, the system suffers huge 
power penalty under strong turbulent condition.

The BER performance comparisons of our 
analytical results with the simulation results 
reported in Ref [16] are shown in Figure 11. In 
Ref [16] the simulation is performed for strong 
turbulent condition with 5617 OFDM subcarriers 
considering the effect of laser nonlinearities. In 
our results, non-linearities of Laser diode are not 
included. Our analytical results shows better BER 
performance without non-linear effects. And the 
analytical result for weak turbulent condition also 
included in figure which represents the better 
performance.

Conclusions
An analytical approach is presented to evaluate 

the bit error rate (BER) performance of an OFDM 
FSO link in presence of atmospheric turbulence. 
The results show that the BER performance is 
strongly degraded due to the effect of atmospheric 
turbulence. However, the BER performance results 
can be improved and the power penalty can be 
greatly reduced by increasing in the number of 
OFDM subcarriers. Finally, the analytical results 
are compared with the computer simulation work 
that is reported in ref. [16]. The results of this 
research will find applications in design of RF OFDM 
modulated optical intensity modulation FSO link 
with direct detection receiver for high data rate 
application.
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